Asymptotic Behaviors of the Colored Jones Polynomials of a Torus Knot

نویسنده

  • HITOSHI MURAKAMI
چکیده

Let K be a knot in the three-sphere and JN (K; t) the colored Jones polynomial corresponding to the N -dimensional representation of sl2(C) normalized so that JN (unknot; t) = 1 [8, 12]. R. Kashaev found a series of link invariants parameterized by positive integers [9] and proposed a conjecture that the asymptotic behavior of his invariants would determine the hyperbolic volume of the knot complement for any hyperbolic knot [10]. It turned out [19] that Kashaev’s invariant with parameter

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Limits of the Colored Jones Polynomials of the Figure-eight Knot

We will study the asymptotic behaviors of the colored Jones poly-nomials of the figure-eight knot. In particular we will show that for certain limits we obtain the volumes of the cone manifolds with singularities along the knot.

متن کامل

Difference Equation of the Colored Jones Polynomial for Torus Knot

The N-colored Jones polynomial JK (N) is one of the quantum invariants for knot K . It is associated with the N-dimensional irreducible representation of sl(2), and is powerful to classify knots. Motivated by “volume conjecture” [12, 18] saying that a hyperbolic volume of the knot complement dominates an asymptotic behavior of the colored Jones polynomial JK (N) at q = e2πi/N , it receives much...

متن کامل

Asymptotics of the Colored Jones Polynomial and the A-polynomial

The N-colored Jones polynomial JK (N) is a quantum invariant which is defined based on the N-dimensional irreducible representation of the quantum group Uq(sl(2)). Motivated by Volume Conjecture raised by Kashaev [16], it was pointed out that the colored Jones polynomial at a specific value should be related to the hyperbolic volume of knot complement [21]. As another example of the knot invari...

متن کامل

Difference and Differential Equations for the Colored Jones Function

The colored Jones function of a knot is a sequence of Laurent polynomials. It was shown by TTQ. Le and the author that such sequences are q-holonomic, that is, they satisfy linear q-difference equations with coefficients Laurent polynomials in q and qn. We show from first principles that q-holonomic sequences give rise to modules over a q-Weyl ring. Frohman-Gelca-LoFaro have identified the latt...

متن کامل

Proof of the volume conjecture for Whitehead doubles of a family of torus knots

A technique to calculate the colored Jones polynomials of satellite knots, illustrated by the Whitehead doubles of knots, is presented. Then we prove the volume conjecture for Whitehead doubles of a family of torus knots and show some interesting observations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004